Principles of experimentation that farmers need to understand

Ric Coe, 11 September 2015

If farmers take more roles in experimentation then they need to understand the basic principles of how an experiment works. Here is an attempt at listing the minimum set of principles that it would be useful for farmers to understand, along with a simple explanation of each. The aim is to express these in a way that an interested farmer could understand, and that could be translated into local languages.

There are additional principles and practices that researchers and facilitators need to understand. This list only concerns what farmers need to know.

This document has no suggestions of how farmers can be helped to understand these principles. Those need developing, testing and describing by people with relevant experience. An experiment done with farmers should be part of a larger process of dialogue and learning done with farmers, researchers and others. This document describes principles for only a small part of that process.

Principle	Explanation and examples
The aim of an experiment or	Experiments in agriculture are the main tools available when we have
trial is to compare alternatives.	alternatives or options and need to understand their relative performance.
	Examples of options that can be compared in an experiment include:
	- Crop varieties
	- Agronomic practices
	- Pest control methods
	Comparisons need to be made:
	 in farmers' fields, as the performance will probably depend on where
	the comparison is made
	 by farmers, as only they can assess performance in terms that matter
	to them.
Experiments and	The aim of a demonstration is show how something is done so others can learn.
demonstrations have different	The aim of an experiment is to find out the effects of doing things differently.
aims so have different	Experiments are needed when something is not known- such the effect of
requirements	changing practice or variety – and this can be found out by direct comparison of
	the alternatives. A demonstration requires someone (the person
	demonstrating) to know what they are doing and be able to show others.
The minimum number of	Since experiments are based on comparison between alternatives, the
options to compare in one	minimum number of things to compare must be two. There is no maximum
experiment is 2. There is no	number, but the more options compared the more complex the experiment will
maximum.	be. A successful experiment with very many options compared will be hard to
	design, management and learn from.
	It is common for each farmer taking part in an experiment to compare all the

	options being consider, but it is not a requirement that every farmer has the same set.
Include a 'baseline' option to	New options need to be compared with something that acts as a baseline. The
compare new ones with.	'something' will usually be the current practice or variety. It should be
	something farmers are familiar with. It would only be a 'zero input' ontion if
	that is current practice. There may be more than one baseline option in a trial
	The term 'control' is sometimes used for the baseline option, but can be
	confusing and is best avoided
Compare like with like	Ontions are usually compared on small plots. These should be as similar as
compare like with like.	possible in all ways excent the option that is being compared
	For example, if comparing two methods of soil fertility management then the
	two plots should be of similar fertility before starting.
Allocate options to plots	Decide which option should be planted on each plot at random – for example
randomly	by pulling numbers from a hat – so as to avoid any possible bias due to putting
,	a favoured treatment on the best plot, or always making the first plot the
	baseline.
Repeat comparisons to be sure	Performance of small plots can be influenced by many different things, some of
differences between options	them unknown and invisible. Confidence in the results of an experiment is
are consistent	increased by making sure that each comparison between ontions is repeated
	and then checking for the consistency across repeats of differences between
	options. For example, if a local and new variety are compared, we need several
	reneats of the pair of plots. Reneats can be on the same farm, on different
	farms in different locations and in different seasons. Each type of repeat gives
	a different sert of information
Managa the alternatives in the	The management of plots in the trial should be the same for all entions being
same way in all respects except	compared and he as similar as possible to normal practice. Each plat should be
same way in an respects except	for tilized the same way, planted on the same day and wooded on the same day
those you want to compare.	(unless these such a sufficience being second and weeded on the same day
	(unless these are the options being compared).
Keep good records of what you	Keep a careful record of which plot is which. Either label them with something
do and what you see.	that will not get lost, or make a plan of the plots and label each option on the
	Keen notes of dates when plots are planted and managed. Keen notes of any
	observations of things hangening to the plots
Take unbiased observations of	If you take any measurements of the plots then carefully follow the
each alternative and record	instructions, assess each plot fairly and honestly, and keep careful records of
them carefully	the results. Remember this is not a competition between the entions or
them carefully.	hetween formers taking part. You need to know exactly how each performs
	and if some don't perform well everyone need to know exactly now each performs,
	and it some don't perform well everyone need to know that.
Learn by comparing	Everyone learns most from experiments if the results from many farmers are
experiences from several	put togetner.
farmers doing the same trial.	[[This is the simple version of the point on 'repeats'. Which is better?]