Potato seed degeneration in the tropical Highlands of the Andes in Ecuador

The beginning

Introduction

- Potato seed degeneration is:
 - The accumulation of seed-borne diseases over time
 - Consequently, the yield of the potato crop is reduced

Seed multiplied vegetatively

Sharma et al., 2016; Sharma et *al.*, 2017; Bertschinger et al., 2017; Schulte-Geldermann 2012 and many others..

Introduction

Potato seed degeneration

In theory!!!

Sharma et al., 2017

Farmers?

- They are not in the previous picture.
- Can we see any influence?

Activities of a seed system

- Breeding
- Seed Multiplication
- Management
- Seed replacement
- Seed dissemination

Introduction Chaucha Roja Oolores △ INIAP-Fripapa 1.2 INIAP-Gabriela INIAP-Yana Shungo × 1.0- Única 5 E 0.8 .6-명 Legend localidad 0.4 curvas_potato_cantons 300 - 2701 0 - 2701 - 3000 0.2 \bigtriangleup 3000 - 3300 Δ - 3300 - 3600 2500 3000 3500 4000 Altitude (m.a.s.l) Seed renovation rate in the в province of Cotopaxi -0.6-D Chaucha Roja Dolores NIAP-Fripapa INIAP-Gabriela 2.5 50 INIAP-Yana Shungo Única -0.7 Shannon indeo 45 40 -0.8-6 ATACUNG 35 SAQUISILI 30 \bigtriangleup 1.5--0.9 ° \triangle Formal system Market Self-provided 20 Seed source -1 PUJILI 15

-1.1

-79.2

-79.1

-79

-78.9

-78.8

-78.7

-78.6

-78.5

-78.4

Altitude

10

Figure 1. Seed borne pest diversity on seed tubers surveyed in three provinces in Ecuador. A. Effect of the altitude on virus diversity: dashed line represents a model including all varieties ($R^2 = 6\%$), and full line a model excluding INIAP-Gabriela ($R^2 = 22\%$). B. Pest diversity on tubers according to the three seed sources.

Virus diversity in the seed of potato producers.

Introduction

My research questions are?

- What are the social and ecological drivers altering potato seed degeneration rates?
- What on-farm management practices are available to improve seed degeneration? And under which conditions?

Methodology: Study site

What we did?

• The Multi-stakeholder framework for intervening in RTB seed systems

• Survey (pilot + n=260). "Rhomis"

• Seed sampling (1-10 seed tubers)

Soil sampling (close field to the house)

Focus Group Discussions

Highlights

	Number of respondants	Farmers perceiving seed degeneration	Gender dis-aggre perception	gated
Cantons		Total	Female farmers	Male
		percentage		farmers
Latacunga	109	50.9 (n=56)	48.2	51.8
Pujili	67	43.3 (n=29)	44.83	55.2
Salcedo	54	59.3 (n=32)	46.87	53.12
Saquisili	19	52.6 (n=10)	30.0	70
SubTotal	249	51.0 (n=127)		

*The remaining 10 farmers not considered in this analysis described nutrient depletion as seed degeneration

	OBS	Change of physical appearance	Change on the physiological seed status	Plants become more susceptible to diseases	Increase of agricultural inputs	Reduction in yields
itacunga	56	26.6	0	1.56	3.1	68.8
jili	29	0	3.4	3.4	0	93.1
lcedo	32	9.1	0	0	3.0	87.9
quisili	10	18.2	9.1	9.1	0	63.6
/erage		11.4	3.1	3.5	1.5	78.4

- 53 varieties (native, bred, and unknown origin varieties)
- Formal system focused on one variety "Super chola". Limited seed supply and access.
- Local seed systems are diverse. Farmers have in average 2.4 varieties of different seed sources.
- Multiple problems in the seed: Tuber moth, black scurf, PVX, PVS and G. pallida. Current problem: Purple top
- Time of farmers reusing the seed might need to be reconsidered when related to yield decline.
- Exploring this indicator as proxy for seed-borne pests and pathogens accumulation.

Data 2018 (n=564 seed lots)

Highlights

Seed-borne pests

Seed-borne virus

Nematodes

- *Globodera pallida* is the main nematode present in the region.
- 40% of the samples are free of this nematode
- 60% of the samples have different concentrations of this nematode

Next steps

- I will have a control plot to measure potato seed degeneration rates in each FRN,
- My initial suggestion is to invite them to test and "learn" different on-farm management practices.
- Variables I will measure are presence or absence of seed-borne diseases and pests. Plus, variables discussed with farmers

Portfolio of on-farm management practices

- Field selection
- Varietal resistance (is it possible?)
- Positive selection
- Roguing (Negative selection)
- Use of high quality seed
- Seed selection
- Seed plot
- Potato seed bank
- Push and pull systems (with local species)

Who is involved?

Agradecimientos

RESEARCH PROGRAM ON ROOTS, Tubers and Bananas

Questions to discuss

- Could the different farmers' groups involved be called FRNs?
- Is my project contributing to AEI? Why? And Why not?
- How to improve this protocol to generate evidence between AEI and FRNs?
- How can "FRNs" in my project develop a data pipeline to keep it for them and to share it?
- Was this exercise useful?.. How to improve it?