# Modeling and mapping village futures

Mary Ollenburger mary.ollenburger@umces.edu

# Bougouni District, Mali

- Good climate for agriculture
- Low population density
  - about 25 people per sq. km.
- Most people are farmers
  - They self-identify as farmers
  - Usually have add'l income source
    - e.g. small shops, gold mining, temporary migration
- Incomes hard to estimate but typically near \$1.90/day PPP ("extreme poverty")



### Research Question

How can farmers make a living? ...in the place where they live ...while protecting the environment



# 3-stage process

- Scenario development
  - Introductory meeting: Village histories
  - Demographic groups: looking to the future
- Land Use Game
  - Role-playing board game farmers can play
- MaliSENE Model
  - Agent-based model of land use change







# Defining scenarios

• How is the land around the village used now? How might that change?



# Village landscape



# Defining scenarios

- How is the land around the village used now? How might that change?
- What will be different in 25 years? What will the village look like? What will people do?



# Agricultural changes mentioned

- Mechanization
  - allow farmers to cultivate more land
- Tree crops
  - cashew, mango
- Reduced reliance on cotton



# Defining Scenarios

- Based on identified agricultural changes
  - Tractor subsidy program
  - More opportunity to plant cashew trees
- Population growth and migration included, but not varied



### The Land Use Game



### The Land Use Game

- Five farmers (players) with different starting asset levels
- Land cultivated limited by draft power
- Each turn is one three-year rotation (cotton-maize-groundnut)
- Productivity declines unless land is fallowed
- Trees can be planted on fallow land
- Wealthiest farmer purchases a tractor in turn 2

# How do people play?

- Fallowing
  - after 6 years productivity declined
  - planted trees, continued growing food crops for first 3 years
  - farmers discussed the best strategy and all followed the same one
- Tractor owners rented out at or near cost
- Slight expansion in food crop land
- Larger increase in tree crop land
- Land distribution became more equal
- Investments made in livestock despite lack of return (savings)





### What do we learn?

- Cultivation of staple crops continued even when less profitable than tree crops
  - risk-aversion, lack of trust in markets
- Land can fill up!
  - current abundance makes this hard to imagine
- Is it important to 'reserve' land for livestock?
- Are these game boards plausible?
  - In Sibirila: yes—people already plant cashew
  - In Dieba: no—some people will plant trees but not as many as in the game

# Agent-based models

- Environment
  - Space (the game board)
- Step
  - Time increment (a turn)
- Resources
  - stuff (land, draft animals, crops...)
- Agents
  - stuff that can interact (players)
- Interactions
  - relationships among resources and agents (game rules, player decisions about what to plant where)

# MaliSENE Agent-Based Model

- Same concepts as the game
- The computer model lets us have a lot more agents and runs much faster
- But decisions determined by programming, not by real people

### Environment – quantified landscape

#### Community map



#### Landsat classification



Elevation and slope



## Environment – quantified landscape

Community map

Elevation and slope





### Model structure



### Scenarios tested

- Tree planting preference:
  - Low (0.03), Medium (0.3), High (0.8)
- Tractor availability:
  - For purchase:
    - Not available (infinite price)
    - Subsidized (half price)
    - Unsubsidized (full price)
  - For rental only
- Factorial combinations -> 12 scenarios

### Indicators used

- Income household and village level
- Inequality within village
  - income and land
- Village-scale land use change
- Field ages and land use distributions
  - increased field ages or decreasing land suitability in cropped areas may indicate land degradation

### Income in year 20

|                              | Annual income per person (US\$, average) |        |      |
|------------------------------|------------------------------------------|--------|------|
| Tree planting<br>preference: | Low                                      | Medium | High |
| Tractor types:               |                                          |        | 0    |
| None                         | 170                                      | 826    | 1632 |
| Subsidized                   | 170                                      | 814    | 1484 |
| Unsubsidized                 | 170                                      | 819    | 1589 |
| Rental                       | 406                                      | 1278   | 2458 |

Initial value: US\$ 190 per person

In low tree preference scenarios no agent could afford a tractor

# Inequality in year 20

- Income:
  - Initial GINI coefficient 0.614
  - Final GINI coefficients generally lower
    - Lowest final:
      - High tree planting/subsidized tractors 0.483
    - Highest final:
      - No trees/tractors: 0.670
- Land
  - Initial GINI coefficient 0.411
  - Little change between initial and final values

### Land use distribution – year 0





### Land use distribution – year 20



## Land use change

- Baseline (no tractors, low tree preference) shows little change
- Annual crop areas similar in all tree preferences
- Minimal effect of tractor subsidy



# Land suitability and field ages

- Land suitability
  - Expansion onto unsuitable land beginning around 40% of area cropped
- Increase in field age
  - Lower field ages in high tree planting scenarios trees provide incentive for fallowing
  - Increase in field age often accompanied by higher input use, reducing degradation

## Improving livelihoods

- Mechanization and new crops have the potential to dramatically change farmers livelihoods
- High-value, low labor crops, with low initial investment costs, provide widespread benefits
- Improving access to credit is more effective than subsidization



### Sustainable extensification?

Some land expansion is inevitable

- Perennial tree crops may mitigate impact of expansion while broadly improving incomes
- Mechanization improves incomes, but leads to expansion of area in annual crops

### Thank You

Ken Giller, Katrien Descheemaeker, Todd Crane ICRISAT Mali AMEDD Mali Institut d'Economie Rurale FENABE Bougouni The McKnight Foundation USAID-AfricaRISING Farmers in Sibirila, Dieba, Flola, Madina, Sorona, Banco, and Kodialan

